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ABSTRACT

' This report describes algorithms, performance, applications, p

and user information associated with two equation-solving codes for

the CRAY-i:

(1) Solution of a single banded matrix equation, unsymmetric

in value but symmetric in structure;

(2) Solution of a single profile matrix equation, unsymmetric

in value and in structure.

Both solvers assume that the matrix is main-memory resident. The

former partitions the matrix internally to achieve high performance.

The latter requires a user-supplied blocking of the LU structure,

an inconvenience compensated by higher performance in solution of

finite difference and a finite element grids.

These codes are available as part of a library of CAL-coded I

equation-solvers,[131.

PREFACE I

The mathematical software described herein is the result of

experimental research on vector algorithms for the direct solution

of 2-D finite difference and finite element grids. The latter code

represents what is thought tobe the best compromise between vector-

izability, sparsity exploitation, and user convenience for such

problems for the CRAY-I. S

REVISION NOTICE "

Pages 18f were revised on August 15, 1982, to include

discussion of blocking algorithms.

I,
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I. Banded and General Sparsity Solution

A. Introducti,)n

Studies of the direct solution of 2-D finite element grids

have tended to take one of two directions, depending on the nature

of the sparsity.

1. Band-related methods. Solvers that recognize sparsity

principally outside a band around the diagonal are termed

band-related solvers. This bandwidth may vary - envelope,

skyline, or profile solvers - and may be implicit - as in

frontal methods where a matrix is never fully formed.

These solvers account for an easy majority of direct solu-

tion methods in production codes.

2. General sparsity methods. The early work of George [5]

indicated for the first time the possibility of reduced

operation counts using codes that permit an arbitrary

sparsity pattern, termed general sparsity methods. This

spawned a number of research studies on such methods.

It now appears that general sparsity methods, at least when

applied to matrices sized to reside in the memory of current pro-

cessors, are difficult to vectorize [2] [6] [7]. Rather, only "large-

scale" sparsity patterns can be vectorized to achieve a high perfor-

mance. This conclusion is documented in the following section.

-1-



B. General Sparse Solvers

These solvers accept arbitrary sparsity structure in column-

or row-ordered form and an associated pivot order. After a pre-

processing step to generate the LU fill structure, multiple numer-

ical solutions may then be performed [8]. Early studies of vector-

ization of these scalar algorithms sought to maintain the same

input data structure and carry out the same number of floating point

operations as their scalar predecessors [9]. The imposition jf

these two constraints was justifiable to establish a performance

standard that may be achieved without alteration of common user data

structures and without introduction of the issue of trading off

floating point computation for higher vector performance. By defin-

ing vectors within dense regions of the LU structure, an average

vector length (T) was defined [6]. It was possible to establish

the vectorizability of the solution of finite element grids exploit-

ing such density [6]. Because T increases monotonically with grid

size, sufficiently large 2-D grids can always be satisfactorily vec-

torized.

C. Block-Oriented Solvers

Unfortunately, as nxn 2-D qrids increase, operation counts in-

3
crease at least as O(n ) and direct solution methods become less at-

tractive than iterative techniques. However, vector processors have

made the solution of 3-D and time-dependent 2-D problems feasible;

in such cases, repeated direct solution of a moderate-sized 2-D grid

often appears as a computational kernel in a global iterative strategy

For such moderate-sized grids, one cannot depend on randomly-produced

density to achieve long vectors.
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The first concession to vectorization must be to abandon the

traditional general sparsity input data structures. Rather, the

user must assist in the vectorization process by detecting either

repeated [10] or dense [21 substructures in the matrix.

For the CRAY-l, vectorized block reduction can be performed

rather efficiently [2]. Such blocks are easily detected at the

local level when many (r) unknowns are associated with each node

and/or a finite element has a large number of associated unknowns [41;

all operations can then be visioned as occurring between rxr full

matrices. The overall execution rate (in MFLOPS) can often be esti-

mated from the rate of the multiply-accumulate kernel that accounts

for the major part of the computation in the reduction of each pivot

block. Since no extra computation is performed in such block-oriented

elimination, the solution time is inversely related to this execution

rate.

A study of the solution time with such solvers on the CRAY-I

shows that only part of the speedup over scalar solvers is due to

vectorization.. A significant advantage also accrues from the need

to address only blocks rather than single elements of the sparse

matrix, since this processor is known to be slow in the indirect ad-

dressing mode (gather/scatter) associated with linked list processing.

D. Band-Oriented Solvers

Even the best coding on the CRAY-I -acknowledged to have super-

ior short-vector performance - cannot achieve above 20-30 MFLOPS

with fewer than five unknown3/node. To achieve rates in the range of

100 MFLOPS requires the significantly larger dense substructures that

Algorithms to prepare the structure for vectorization could, of
course, be considered.

I
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are associated with inter-nodal coupling. Such coupling is usually

along a line or adjacent lines (multi-line coupling) that yields a

banded matrix structure. indeed, the natural (grid-row) ordering

of irregular 2-D grids yields a step banded structure, shown in

Figure 5(b). If one can justify performing somewhat extra computa-

tion in the gaps between such steps, the entire solution can be

performed with a locally-banded solution mode.

It is the conclusion of the experiences to be reported that

such block profile matrix solution offers the best performance com-

promise between bandsolvers that assume an absolutely regular sparsity

structure and general sparse solvers that permit random structures.

The study of such a "large-scale sparsity" methods is the goal of

this research.

£. Report Summary

To establish a standard for performance comparison it was essent-

ial to first code an efficient bandsolver in assembly language (CAL).

This was a non-trivial task; the memory-hierarchial CRAY-l architectur

required a partitioned solution process. The first part of this re-

0 port describes the algorithms, implementation, and performance of

this software. Its speedup over Fortran implementations makes this

useful in its own right.

The block profile solution is then discussed and is liberally

documented with examples to give insight into the class of problems

for which it yields improved performance over the above standard.

0 -4-



II. Solution of a Single Banded Matrix Equation

* A. iemory-resident Banded Systems

In reference [1], Jordan has presented an algorithm for solving

a banded set of equations on the CRAY-I and gave the performance of

associated CAL software. Unfortunately, the 64-length vector limita-

tion of the CRAY-I resulted in the code being applicable to matrices

with half-bandwidths b:64. This part of .the report describes the

design and performance of software that does not have this restriction.

It can be argued that very large banded sets of equations cannot

be solved with the entire matrix resident in main memory, an assump-

tion of the code to be described. Nonetheless, an intermediate range

of matrix sizes beyond the above bandwidth restriction can be stored

in even -megaword configurations, and yet solved in fractions of a

second. With up to 4-megaword systems in the offing, it is likely

that the majority of banded matrices will be beyond the capability of

*i Jordan's code.

Because most banded matrices arise from the solution of partial

differential equations, consider the banded matrix produced by apply-

ing the 5-point finite difference formula to the 2D grid of Figure 1,

where

n is the shorter grid dimension

n. is the longer grid dimension

u is the number of unknowns per grid point

k,=ns/n. is the ratio of grid dimensions

n Z=9

.r-u unknowns/grid point

=5 |  .•
ns . . . k 9=n /n

z s

Figure 1. Definition of grid descriptors
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s/k 2 4 8

4 126:126 159:79 109:49 247:30

2 100:100 127:63 155:38 199:24

1 79: 79 101:50 123:30 151:18

63: 63 79:39 99:24 119:14

50: 50 63:31 75:18 95:11

39: 39 49:24 59:14 71: 8

Table 1. b :n as a function of matrix
max smax

storage (megawords) and number of unknowns/
grid point; examples below dashed line have
bmax <64.

The matrix is of order n=unsn, with a half-bandwidth b= -1.

The matrix storage in compressed form (Figure 2) is

s = (2u(ns+1)-1) (unsn £)

= (2u(n +1)-l) (uk n ) (1)

For n >>i,

2 3s - 2kz u ns (2)

Asymptotically,(2k~u21 / 3

ns = (2)

and the half-bandwidth is

b = un
s

= .794u1/ 3 (s/kZ ) 1/3 (3)

* With b::64, it is clear from (3) that grids with a constant k will

be more impacted by this restriction as u increases. The precise

nature of this restriction is indicated in Table 1. For example,

a one-megaword processor with a grid dimension ratio kz=2 will

* accommodate the matrix only when uzl; yet the associated equations

can be solved in only 330 msec at 100 MFLOPS, a representative exe-

cution rate. Even a square 50 x 50 grid with u=4, executing on a

four-megaword system, can be solved in only 8 seconds, and yet

-6-



generates a half-bandwidth of 203, well beyond the 64-length limita-

tion.

In conclusion, it appears that many 2D grids producing matrices

with bandwidths greater than 64 can be solved in reasonable time

with direct methods on present and near-term memory configurations.

The more general program to be described can be expected to extend

the usefulness of many application codes that are based on direct

methods to such problems.
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B. Algorithms and Implementation

1. Problem statement and solution

It is desired to solve a banded set of equations

AX = B

where A is an n x n unsymmetric matrix of half-bandwidth m, and is

sufficiently well-conditioned that pivoting is not required.

The solution is performed by partitioned LU factorization of

A in one subroutine (BANFAC) and by partitioned forward and back

substitution in a second subroutine (BANSOL).

2. Storage options

In different applications disciplines, it is customary to store

the matrix in one of two compressed formats. In row storage format,

illustrated in Figure 2(b), the diagonals are stored in rows of a

(2m+l) x n array; in column storage format, the diagonals are stored

in columns of a n x (2m+l) array. The voids are assumed to be zero-

valued.

3. inner loop algorithm

The algorithm of Jordan's inner loop code is adopted for this

more general code, although the coding is somewhat different.

Jordan's LU factorization uses the following accumulation for

the jth columns.

U(k+l) (k)U
r+l:s,j r+ls,j - UrjL r+l:s,r (5)

(k+l) L (k) .L
j+l:t,j j+l:t,j rj j+l:t,r (6)

L. = L(j-r) /u(
j+l:t,j j+l:t, j (7)

* where s=min(r+m,j), t=min(r+m,n), r=r 0 , ... j-l, k=r-r0 , r =max(j-m,l),

and Ua:b (La b .) represents a vector of components u. (Zij) with

a-i<b.

Since the calculation of ur0+kj is completed after the kth

* step and since the component u.. (or 1i..) is unaffected by the accumu-

lation until i~r+m, the vector lenqth remains m until r+m>n. After

each kth step, the first vector element uro+k , or .ro +k l is removed

-8-



by a vector shift and a new final element u or Z j added

at the end 
of vector.

Once removed from the vector, the completed element immediately

becomes a scalar multiplier Urj in (5) and (6). This removal pro-

cess creates a delay in Jordan's code, and a subsequent small loss

in asymptotic MFLOP rate. The delay is removed in the new code

by precalculating the first vector element in scalar mode. The

resulting accumulation loop has a timing formula

TZ = 17 + VL VL>30 (8)

where VL is the vector length; the associated execution rate is 126

MFLOPS for VL=64. For VL<30, the timing is approximately a constant

47 clocks.

4. Partitioning

To extend Jordan's code beyond half-bandwidths of 64 while main-

taining the high execution rates associated with vector accumulation

loops such as the above, the matrix must be partitioned into 64 x 64

blocks, noted by Jordan (1] for full matrices and Calahan [2] for

block sparse matrices. In [21, the partitioning of banded matrices

was performed into square blocks and "bandedge" blocks, with a de-

gradation in processing the latter. In the present code, the parti-

tioning is performed into diagonal blocks, as illustrated in Figure

3. Loops is a single vector operation; loop® Qis the inner loop

of vector operations which terminate after 64 accumulations into the

jth column. In loop®D, the next 64 elements of the same 64 columns

are accumulated into the jth column. The scalar pre-calculation

noted above for the inner loop is unnecessary for the blocks non-

adjacent to the diagonal, and a somewhat more efficient accumulation

loop is utilized. LoopD continues until the bandedge is encountered.

Loop @ then advances the accumulation to the next column of 64 blocks,

as shown in Figure 3.

When the bottom of the matrix is encountered in the processing

of a block, one is faced with either testing for this condition in

the inner loop -- and thus adding a fixed inner loop overhead -- and

then reducing the vector length, or simply carrying out the additional

floating point calculations. It happens that the matrix storage for-

mat permits the latter during factorization, so that this procedure

-9-
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1 1  1 2  1 3

a a a a

21 22 23 24

a3 1 a3 2 a 33 a34  a3 5

a4 2 a4 3 a4 4 a4 5 a4 6

a5 3 a5 4 a5 5 a5 6

a6 4 a6 5 a6 6

Logical storage (m=2,n=6)

0 0 a11 a12 a13

0 0 a13 a24 a35 a46 0 a21 a22 a23 a24

0 a12 a23 a34 a45 a56 a31 a32 a33 a34 a35

all a22 a33 a44 a55 a 66 a42 a43 a44 a45 a46

a21 a32 a43 a54 a65 0 a53 a54 a55 a56 0

a31 a42 a53 a64 0 0 64 65 66 0 0

Row storage (5 x 6 array) Column storage (6 x 5 array)

0

Figure 2. Band matrix storage formats.
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Figure 3. Illustrative partitioned matrix



was chosen. The extra block processing is indicated by dashed lines

in Figure 3. For large n/m ratios, the faction of extra computa-

tion is bounded by m/3n. During the substitution steps, the ratio

is bounded by m/2n; also, the right hand side is relocated on

entry and exit, to provide requisite void storage space.

U
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C. Performance

In comparison with the timing of Jordan's unpartitioned code,

the partition . -...... :-ewhat more overhead to implement

the partition-,ng and to allow row- or column-ordered storage. However,

- use of a simulator [3] has allowed a somewhat more careful attention

to inner loop timing (see below). This effort is deemed worthwhile,

since the direct solution of large dense matrix equations inevitably

dominates the equation formulation, with the result that the total

execution time tends to be closely related to the performance of
this inner loop.

Table 2 gives the performance statistics* of the partitioned

versus the unpartitioned code. As indicated, the specialized inner

loop coding more than compensates for the outer loop overhead. Also

* the execution rates for even small bandwidths easily exceed those

of scalar processors (in the order of 1-5 MFLOPS).

The effects of partitioning are shown in Figure 4. For band-

widths less than 65, no partitioning is necessary and all vector

lengths are equal to the bandwidth. For 65_<m<128, the average

vector length is approximately m/2. A resultant sharp drop in execu-

tion rate occurs for m=65. For 129-mt192, the average length is

2m/3, so that the decrease for m=129 is less severe.

Figure 4 also presents the measured rates of this software versus

the Fortran-coded LINPACK bandsolvers SGBFA and SGBSL available at CRI

(a slower version of these codes on the UCS system in 9/81 was also

tested). Because these codes allow pivoting (which commonly accounts

for 25-30% of the solution time in CAL for large matrices), this com-

parison is somewhat unfair to these Fortran codes.

It is perhaps more intuitive to relate the performance directly

to the grid from which banded matrices are normally derived. Table

3 gives the computing times and execution rates for a number of cases

up to the storage limits of a megaword machine. The execution rates

uniformly are in the range of 100 MFLOPS for large problems, ranging

up to the limit 118 MFLOPS for a 64 x 64 grid with one unknown per

grid point.

*All performance results in this report are derived from runs on
the megaword CRAY-I configuration at United Computing Systems, Inc.

-13-



Half Bandwidth Time : Rate Improvement
(ms : MFLOPS*)

Factori zation

8 1.88:18.2 2.1

16 2.97:43.6 1.9

32 5.66:86.0 1.7

64 16.0:110. 1.3

96 35.9:99.2 --

128 54.6:103. --

Solution

8 .315:26.4 1.3
16 .316:51.0 1.3

32 .358:86.1 1.3

64 .565:102 1.1

96 .921:87.1 --

128 1.14:86.2 --

*Extra computation ignored in operation count (see text)

I

4

Table 2. Timing performance of partitioned code for
256 equations, and comparison with Jordan's
original code [1].

4
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120- (1,17 28,114)

CAL
I00-

u. 80-

w (65,76)

~60-

z
0

(16,44)
D 4 0 -

20- (,8

0 20 40 60 80 '100 1201i30
HALF BANDWIDTH

Figure 4. Performance of banded partitioned (CAL) and
LIN TPACK (CFT) timings for solving 1024 equations;
Note the LINPACK codes include pivoting.
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n1 2 4

8 .457:17.5 1.52:45.4 6.50:89.0

16 2.97:43.6 12.3:88.2 115:76.8

20 221:96.7

24 51.1:106. 113:107.

28 718 :114.

32 23.6:88.4 224:76.2

40 445:93.3

64 283:118

(a) Factorization (BANFAC)

IU

1 2 4

8 .085:28.1 .162:50.1 .376:89.1

16 .315:51.0 .720:91.4 3.49:76.2

20 5.43:95.6

24 2.07:107 8.55:105.

28 12.7:112.

32 1.40:93.0 7.05:74.6

40 11.1:92.7

0 64 8.84:118.

(b) Solution (BANSOL)

* Table 3. Time (msec): execution rate (MFLOPS) as a
function of square grid size (ns) and
number of unknowns per grid point (u).
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D. Software Description

1. Calling sequence

Factorization

CALL BANFAC (N,M,A,NDIAG,NDROW)

Substitution

CALL BANSOL(N,M,A,NDIAG,NDROW,B)

where

N is the number of equations

M is the half-bandwidth, not including diagonal

A is the compressed band matrix array

NDIAG is the diagonal addressing increment

NDROW is the row addressing increment

B is the right hand side and the solution array

2. Explanation

1. NDIAG is the storage addressing increment between logical

matrix positions (i,j) and (i+l,j+l), i.e. between successive

diagonal elements. For row storage, NDIAG>2*M+l; for column storage,

NDIAG=l.

2. NDROW is the storage addressing increment between logical

matrix positions (i,j) and (i+l,j), i.e. between successive column

elements. For row storage, NDROW=l; for column storage, NDROW=-(N-I).

3. Restrictions

1. Storage must be zero-valued beyond active compressed banded

storage (Figure 2).

2. Storage for B must be at least N+2*M.

3. INDROW! should not be a multiple of 8, to avoid bank

conflicts.

1
-17-



III. Solution of a Block Profile Matrix Equation

I A. Motivation for Profile Solution

Profile matrices tend to arise in two ways.

1. The "natural" column-by-column (or row-by-row) reduction

of nodes in a 2-D grid produces a banded matrix for rec-

tangular grids only. For grids with irregular external

boundaries, a variable bandwidth (profile) matrix re-

sults.

2. Floating point computation can be approximately halved in

solution of a large grid defined by a 5-point operator,

by first reducing unrelated nodes. This step requires

insignificant computation for large grids; however, it

halves the matrix size and leaves the bandwidth unchanged.

If the unrelated nodes are eliminated along alternate

diagonals (termed AD or D4 ordering [111) and then the

remaining nodes numbered along diagonals, a profile matrix

results. The LU factors of such a matrix are illustrated

in Figure 5(b) for the 8x12 grid of Figure 5(a). By ex-

ploiting this profile, floating point operations can be

reduced by another factor of 2 for a large square grid.

In the examples of this report, it is assumed that the alter-

nate diagonals have been eliminated in the first step and only a

4profile matrix remains. On the CRAY-I, the vectorization of this

first step is highly dependent on the regularity of matrix storage,

since considerable data movement but little computation is involved.

With random storage and scalar operations from FORTRAN, a rate less

than 1 MFLOP may be achieved. With a patterned storage, from CAL

-18-



a rate of 70 MFLOPS has been observed. In the first case, the

significance of the time associated with this first step can be

ignored only with very large grids.

Storage permitting, the profile matrix could be solved by

the bandsolver previously described. If the profile solver were

to operate at the same execution rate as the bandsolver (an opti-

mistic assumption), then on a square grid the solution time would

be halved. This factor of 2 is therefore an upper limit on speed-

up of profile over banded solution. Note that this is far less

than the 3-5 speedup factor which CAL achieves vis-a-vis CFT (Fig-

ure 4).

B. Block Profile Solution

1. Blocking Rationale

The vectorization of the solution is further assisted by "reg-

ularization" of the matrix structure into two-dimensional blocks,

for two reasons.

(1) Fewer symbolic descriptors relating to block size and

storage locations are necessary to describe a block than

to describe the same matrix elements either individually

or as a collection of 1-dimensional dense columns or rows

(as in [91). The processing of these descriptors can

add significant overhead to numeric processing, especially

when processing small blocks on a vector processor.

(2) The high speed CRAY-I vector register set has a single

critical data path to main memory. The utilization of

this path can be reduced by performing matrix-matrix or

-19-
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t I I I I I I I

xx x II 9 xx 1 7 x x 3 25 x Ix 4 33 1 xIx 4 59 x xx 4 7

S I I I I I I I

12 - xx - 18 - xx - 26 - xx - 34 - xx - 40- xx -144 - xx

i I , I I I I I I I i I

'0 xx -19 -xx -27 -xx -35 -xx -41 -xx -45 -xx -47

I g j I I I I

20 - xx - 28- xx - 36 - xx - 42 - xx - 46 - xx - 48- xx

Figure 5(a). AD-ordered 8x12 grid; xx repre-
sents nodes eliminated in pre-reduction step.
Matrix shown in Figure 5(b).

2
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Figure 5(c). Blocked profile matrix associated
with 8x12 grid, with u = 2; 0 -zero-valued posi-
tion inserted for blocking.
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(a) Problem #1, 8x69, 391 equations

IN

(b) Problem #2, 23x37, 507 equations

(c) Problem #3, 55x72, 2323 equations

Figure 6. Irregular grids
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XIXXxXXxxXXXxx XXIX CoxxXXXxxxx~x XXXXxxXXC

XXXIIxxXXIXXxXXXx Xx xXXXXXXXXXXXxxXXXXXXIXXXx

XIXXIXxxxxxxxX xX XX IX IXXxxxxxxxXIXXxxICxxXX

xxxxxxxxxxxxxxxxxxxxxx xxxx x xxxxxxxxxxxxxxxxxIXXXXCXIxxCX
xxxxxxxxxxxxxxxxxxxx xx oxxxxxxxIXXXXXXXXXXIXXXIIoxx
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xx XXXIXXXXXXIXXXXx XX XXIX XXXXXXXXIXXXXXXXXXXXXXOXXOXXXX
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(a) Original LU factors (b) After column-ordered
elimination and blocking

4 Figure 7. Northwest 61x61 partition of 507-
equation LU factors; with AD ordering after
elimination of alternate nodes; 0-zero-valued
positions added for blocking.

4
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matrix-vector rather than vector-vector operations.

The identification of matrix (or block) structures is

thus essential to achieving highest execution rates.

2. Blocking Attributes

To gain insight into desirable blocking attributes, two

classes of problems are studied in this report.

(a) The model grid of Figure 1, reduced to a profile matrix

by D4 ordering.

(b) A set of three irregular grids of Figure 6, taken from

*[14]. Unrelated nodes are pre-reduced, but in the nat-

ural ordering of the grid rather than along diagonals.

The profile of the resulting matrix is then similar to

the profile of the matrix resulting from natural order-

ing of the entire grid; however, the number of equations

is approximately halved.

The structure of the LU matrix from an AD-ordered model grid

has been shown in Figure 5(b). For the irregular grid of Figure

6(b), a submatrix is shown in Figure 7(a). In both cases, the

* natural matrix boundaries occur not in rectangular blocks but in

blocks whose boundaries are parallel to the diagonal. This charact-

eristic is consistent with the partitioning strategy of the band-

* solver; this suggests that the accumulation kernels of the latter

may be used in this case.

Unfortunately, these accumulation kernels require that a column

* of L be considered dense from the diagonal to the largest row number

(contrast, an inner-product accumulation). As a result, for the ir-
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K.

regular grid of Figure 6(b), the columns of the L factor are

extended to the bandedge, as shown in Figure 7(b). The result-

ing extra computation associated with extra non-zeros will be

evaluated later empirically. Non-zeros need not be added to the

U matrix for this reason.

A second accumulation kernel characteristic is the assumption

that successive columns being accumulated begin and end one row

number apart. This observation sets the primary requirement of

the blocking algorithm for L and U, i.e., the identification of

two-dimensional submatrices, each bounded above and below by diag-

onals parallel to the main diagonal and by columns on each side.

In this blocking process, one can judiciously add non-zeros

to complete blocks, as in Figure 3 near the southeast corner of

the banded matrix. This becomes the critical part of the blocking

algorithm and will be considered in detail later. This addition of

non-zeros in L will suffice for blocking of the factorization and

forward substitution. However, if the back substitution is to pro-

ceed efficiently, blocks in U must also be completed as above.

Matrices blocked in L and U by the algorithm below are illus-

trated in Figures 5(b) and 7(b) for model and irregular girds, re-

spectively.

3. Blocking Algorithm

An optimal blocking algorithm must have as its goal minimiza-

tion of the factorization (or solution) time by reducing the number

of blocks without adding excessive computation or storage. Develop-

ment of this algorithm would proceed by

-27-
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(a) coding the block factorization and solution algorithm,

(b) developing a detailed timing model for each of the

major loops in the code, and

(c) solving for the location of block separators that mini-

mize the execution time.

This problem can be phased as a nonlinear programming problem.

The nonlinearity arises from the possibility of overlap between

scalar and vector operations: scalar computation may hide a con-

current short vector operation, or it may itself be hidden by a long

vector operation. The dependence of computation time on vector length

is therefore a nonlinear one. Even without this dependence, the

arbitrary insertion of block separators is an integer programming

problem and so is beyond reasonable solution time for large profile

systems.

A local - and thus suboptimal - minimization algorithm has been

developed that focuses on the local irregularities of the profile.

It proceeds as follows:

(a) In blocking L, the search direction proceeds from the

first to the last column; U is blocked from the last to

the first column. The following rules will apply to the

more critical L blocking; similar rules are used to block U.

(b) The locality of the algoriuhm is limited to three successive

columns, numbered rat rb = ra+l, and rc = rb+l. If the

* associated (half-) bandwidths are Ma , Mb , and MC I then the
a Mb? and c the th

block is continued in t:e search direction if Mb = a

Otherwise, depending c the value of MC, either a new

0 block is initiated in the column rb or non-zeros are added

to continue the presei block. This three-column aloorithm
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has the effect of insuring that a block will be at least

two columns wide. The flow-chart for the complete pro-

cess is given in Figure 8.

(c) The local process of (b) is followed by a more global

blocking step where two blocks are merged into a single

block if their half-bandwidths differ by less than a

preset value.

4. Storage

Although storage is considered a secondary issue to processing

speed, storage alternatives deserve consideration before selection

of one for implementation.

(a) If repeated solutions are required from the same factor-

ization, then the LU and the matrix (A) storage cannot

overlap. If overlapping is permitted, then the LU stor-

age may be allocated ahead of the matrix storage so that,

even with fills and inserted non-zeros, the LU storage

does not overtake the matrix storage during factorization.

(b) One has the choice of storing columns of each block

contiguously, or of interlacing L and U storage in the

0 manner of banded matrix storage. When overlapping LU

and the matrix storage is permitted, the choice can

become critical. For example, if the matrix has a

0constant profile so that only one block of U and of

L are defined, then contiguous block storage will require

that either the entire L or the entire U block be stored

ahead of the matrix. In this worst case, total storage

will be at least 3/2 of the matrix storage. On the other
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hand, interlacing columns of L and U must be performed

so that each element is directly addressable from a

block base address. This will inevitably leave gaps

in the LU storage not present in A.

In the blocking algorithm to be discussed, the profile matrix

is stored overlapped with A in compressed banded matrix format, i.e.,

the storage location of logical position (i,j) in LU is (i-j +

HBW +1, j), where HBW is the maximum half-bandwidth of L and U.

The above-mentioned wasted storage is simply tolerated. The LU

storage is allocated in array B at compile time by an EQUIVALENCE

statement of the form

EQUIVALENCE (A(l), B(L))

where the minimum value for L is printed by the blocking subroutine.

It is the user's responsibility to ensure that this amount has been

set aside before proceeding with the numerical solution. When the

symbolic blocking and the numeric solution are carried out in dif-

ferent run steps, this is no problem.

5. Input to Blocking Program

Unsymmetric profile solvers conventionally assume that the

data is stored by column or row. Whereas each column (row) is as-

sumed stored compactly, adjacent columns (rows) may not be. To

allow such non-compact storage, the following data must be supplied

by the user. Note that only storage by column is permitted.

(1) symbolic: the first and last row number in each column;
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(2) numeric: the numeric storage location of the diagonal

elements.

A characteristic often associated with finite difference

grids is the numbering of the nodes without regard for the number

of unknowns (U) per grid point. Correspondingly, it is often con-

*venient to input the above profile description assuming U=l and

then have the blocking algorithm expand the description and per-

form the blocking with U as a parameter.

* *In summary, only the number of equations, the number of un-

knowns per grid point, and the descriptors of (1) and (2) are

* required inputs for the blocking algorithm. The specifics of the

software description are contained later in the report.
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C. Implementation

The following are major considerations in the code development.

(a) The high-performance kernels of the bandsolver are utilized.

Therefore, the performance of the profile solver should

approach that of the bandsolver in the special case of a

large banded matrix.

(b) In the event blocks are larger than the 64x64 partitions

of the bandsolver, the partitioning requirement is imposed

during solution. This imposition of both blocking and

partitioning strategies accounts for significant overhead

in loops above the accumulation kernel. Another source of

overhead arises from the provision for re-formatting the

user-supplied matrix storage to blocked LU form (see (d)

below).

(c) Non-zeroes inserted into U to speedup the back substitution

are not processed during the factorization. From Figures

5(b) and 7(b), this tends to affect an irregular grid more

than a model grid.

(d) From the timing formula for the accumulation kernel in

Equation (8), it may be argued that extending blocks of

L to a length of 30 will not increase the aggregate kernel

timing. Thus, an L block of length 30 can cover all ad-

jacent blocks of lenjth 30, and the total overhead of

processing block descriptors reduced.
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D. Performance

1. Timing Evaluation

The common algorithmic measure of MFLOP rate is not an authori-

tative measure of timing performance for this software since extra

computation results from adding non-zeros to produce blocks.

Instead, a number of model and irregular grids have been solving

using the CRAY-I. Recall that for D4 ordering alternate nodes

have been pre-reduced, leaving a profile matrix.

* Table 4 gives a timing and storage summary of these runs.

In each case, the bandsolver bandwidth was chosen equal to the

maximum profile bandwidth. The timing ratios T F:Tc :1 gives the

relative computation times of the Fortran and CAL (respectively)

bandsolvers relative to the profile solver. The relative time

TC , with a theoretical upper bound of 2 for a model square grid,

C is shown to be less than 1 for narrow-band cases, and becomes

1.76 (the largest speedup or profile solution) for large bandwidths.

Indeed, Table 5 illustrates the high correlation between speedup

and half-bandwidth - whether arising from the profile of a D4-

ordered model grid or the natural profile of an irregular grid.

The principal exceptions to this monotone behavior are the

elongated 32x128 model grid - for which D4 ordering produces a

small profile variation - and grid #1 of Figure 6(a), which also

has a nearly constant bandwiIth. In either case, the overhead of

profile solution seems unwarranted.

2. Processor Utilization

For the irregular grids, the floating point computations were

counted before and after blocking. Indeed, three counts were made

(Table 6).
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1. Original Count. This is the count of operations if

solution were performed on a scalar processor; this count

corresponds to the LU structure in Figure 7(a).

2. Unblocked. The column-by-column elimination requires

dense columns of L to the bandedge, represented by the x fill

in of L in Figure 7(b). The resulting total operation count

is termed the unblocked count.

3. Blocked Count. This count includes the 0 fill n

L in Figure 7(b). The factorization count does not include

the 0 fill in U, but the (back) substitution count does

include this fill.
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Table 6 indicates the largest percentage operation count

c increase for factorization due to blocking occurs with grid #2.

L, This occurs largely because the L blocks are merged into a single

block by the previously-noted strategy of merging all adjacent L

F . blocks of length less than 30. Most blocks of grids #3 are well be-

low the limit.
Of perhaps more significance is the effective MFLOP rate.

This rate is obtained by dividing the number of original operations

(see above) by the solution time; it therefore discounts the opera-

tions due to non-zeros resulting from blocking and allows an intuit-

ive comparison with other vector and with scalar processors. 'Ydis rate

is shown to be over 80 MFLOPS. In contrast, the bandsolver rate is

approximately 110 MFLOPS for a half-bandwidth of 55 (see Table 4).

HBW Speedup Grid u

7 .7 #1(8x69) 1

16 .78 16x16 1

28 .95 #2(23x37) 1

32 1.02 32x32 1

34 .88 32x128 1

39 1.01 #1(8x69) 5

55 1.32 #3(55x72) 1

64 1.41 64x64 1

71 1.45 #1(8x69) 9

86 1.60 #2(23x37) 3

98 1.52 32x32 3

144 1.76 #2(23x37) 5

*Maxiinum half bandwidth

Table 5. Speedup of profile over banded
solution as function of half bandwidth.
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NEQ Original Unblocked Blocked

391

Fac. 15,259 15,469 17,691

Sol. 4,802 4,838 5,322

507

Fac. 191,917 224,853 281,517

Sol. 19,805 21,429 27,599

2323

Fac. 3,754,265 3,982,156 4,093,469

Sol. 180,846 187,008 199,190

Table 6. Floating point operations in solution
of irregular grids. u = 1.

NEQ Effective Actual

391

Fac. 7.99 9.25

Sol. 17.7 19.6

507

Fac. 34.1 50.1

Sol. 38.2 53.2

* 2323

Fac. 75.8 82.7

Sol. 81.8 90.1

* Table 7. Effective and actual MriOP rates
in solution of irregular grids.
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E. Software Description and Calling Conventions

1. LU factorization

Call PROPAC (A, N, ICOL, IBL, NBL, IW)

where

A is the matrix array storage

N is the number of equations

ICOL (3*I-2)* is the location in A of the Ith

diagonal (pivot position)

ICOL (3*1-1)* is the first (smallest) row number

in the Ith column

ICOL (3*1)* is the last (largest) row number in the

Ith column

IBL (4*J-3) is the first column number in the Jth

block

IBL (4*J-2) is the storage relative to A(l), of

the (1,1) position of the Jth block

IBL (4*J-l) is the number of rows in the Jth block

(always positive)

IBL (4*J) is the storage increment between the (K,L)

and the (K, L+l) positions of the block

NBL is the total number of L and U blocks

IW (I) is the L block number that includes the Ith

column

2. Solution (Forward and Backward substitution)

CALL PROSOL (A, N, Y, ICOL, IBL, MOV)

where

Y*contains the right hand side on entry and the

solution on exit; it must be dimen-

sioned at least N + N1 + 6N2

MOV*is 6N1

6N1 is 1 - (most negative row number in the blocked

U matrix)

5N2 is (most positive row number in the blocked L

matrix) - N

*Input data to subroutine
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3. Blocking algorithm

CALL BlOCK (IBL, ICOL, IW, N, M, NPB, MOV, IDSTOR, NBL)

IBL, ICOL*, IW, N*, MOV, NBL are defined in calls

to PROFAC and PROSOL

M is the maximum half-bandwidth

NPB* is the number of unknowns per grid point

-STOR is the storage used by the matrix A. (M and

IDSTOR are used by FORM to formulate example

equations, but in general are unnecessary

to communicate with PROFAC and PROSOL.)

*Input data to subroutine
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F. Example Problems

1. Without Automatic Blocking

A driver program for PROFAC and PROSOL is given in Table

8(a). The symbolic arrays ICOL and IBL need be formed only once;

the array IW and the displacement MOV may be formed from these

two arrays as shown in the program.

Input data for the profile matrix associated with the D4

qordering of an 8x12 grid (see Figure 5) is given in Table 8(b)-(c).

The output array Y(J) has the solution Y(J) = J for the values

given.

2. With Automatic Blocking

A driver program (included on the tape with the CAL-coded

solver) is listed in Appendix A. For symbolic description, the

user may input either (a) ICOL (3*J) and ICOL (3*J-1) or (b) the

conventional column-ordered sparse descriptors of L and U,

assuming that all columns are dense from the first to the last

row number. Numeric storage for the matrix is formed in packed

column-ordered format; storage for L and U is in conventional

column-ordered banded format, using the maximum half-bandwidth.
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L

C'."..* PROFILE SOLVER DRIVER
DIMENSION IBL(200),ICOL(300),IW(100)
DIMENSION A(1000),B(2000),Y(100)
EQUIVALENCE (A(1),B(1000))

Coo* READ SYMBOLIC DATA
READ(5,1)N,NBL,NA
N3=3*N
READ(5,1)(ICOL(J),J1 ,N3)
NBL4=4*NBL

Coo* THE LU FACTORS ARE STORED BEGINNING IN NEGATIVE STORAGE
C LOCATIONS OF MATRIX A STORAGE; THESE ARE INDICATED BY
C NEGATIVE NUMBERS IN IBL(4*J-3)

READ(5,1)(IBL(J),J=I,NBL4)
1 FORMAT(1015)

NB=1
DO 3 J=I,N
IF(IBL(4*NB-3).EQ.J)NB=NB I

3 IW(J)=NB-1
MOVZO
DO 4 J=1,NBL

4 MOV:MAXO(MOV,IABS(IBL(4J-1)))
C"'* READ NUMERIC DATA

READ(5,2)(A(J),J=1,NA)

READ(5,2)(Y(J),J=I,N)
2 FORMAT(IOF5.0)

CALL PROFAC(A,N,ICOL,IBL,NBL,IW)
CALL PROSOL(A,N,Y,ICOL,IBL,MOV)
WRITE(6,5)(Y(J),J=I,N)

5 FORMAT(E12.4)
STOP
END

(a) Driver program

48 16 732
1 1 5 7 1 6 14 1 9 24
I to 35 1 11 46 2 12 57 3

15 71 3 16 86 3 17 101 4 18
116 5 19 131 6 20 146 7 23 164
7 24 183 7 25 202 8 26 221 9

27 240 10 28 259 11 28 277 12 28
294 13 31 314 13 32 335 13 33 356

14 34 377 15 35 398 16 36 419 17
36 439 18 36 456 21 37 474 21 38

493 21 39 512 22 40 531 23 41 550
24 42 569 25 42 587 26 42 602 29
43 617 30 44 632 31 45 647 32 46

662 33 46 676 34 46 687 37 47 698
38 48 709 39 48 719 40 48 726 43
48 732 44 48
1 -306 4 21 3 -264 6 21 7 -180
8 21 13 -54 10 21 28 261 8 21

36 429 6 21 42 555. 4 21 48 681
0 21 48 680 5 -21 46 638 7 -21
42 554 9 -21 36 428 11 -21 21 113
9 -21 13 -55 7 -21 7 -181 5 -21
1 -307 1 -21

(b) Symbolic input data

Table 8. Sample driver program and input data
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20. -1. -1. -1. - 1. -1. 20. -1. -1. -1.

-1 -1. -1 . 20. -1 . - 1 -1 . -1. -1 -1

-1. -1. -1. -1. -1. -1. -1. -1. -1.
-1. -1 -1. -1. -1. -1. -1. -1. -. -1.
-1. -1 -1. -1. -1. -1. -1. -1. -1. -1.

-1. -1 -1. -1. -1. -1. 20. -1. -1. -1.

-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
-1. -1. -1. -1. -1. 20. -1. -1. -1. -1.

20. -1. -1. -1. -1. -1. -1. -1. -1. -1.
-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

20. -1. -1. -1. -1. -1. -1. -1. -1. -1.
-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

-1. -1 -1 -1. -1. -1. 0. -1 -1. -1.

-1. -1 -1. 1. -1. -1. -1. -1. -1. -1.

-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

-1. -1 -1. -1. -1. -1. -1. -1. -1. -1.

-1. -1. -1 -1. -1. -1. -1. -1. -1. -1.

-1. -1 -1 -1 -1. -1. -1. -1. -1. -1.

-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

-1. -1 -1 -1 -1. -1. -1. -1. -1. -1.

-1. -1. -1. 20. -1. -1 . -1. -1. -1. -1.

-. -1. -1. -. -1. -1. -. -1. -1. -1.

-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
-1. -1. -1. -1. -1. -1. -. -1. -1. -1.
-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

-1. 2. -1. -1. -1 -. -1. -1. -1. -1.

-1. -1 -1. -. -1. -1. 20. -1. -1. -1.

-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
- -1. -1- -1 .- 1 0-1. 20. -1. -1. -1.

-1. -1 .-1. -1 .-1 .-1 .-1. 20. -1. -1.
-1. -1. -1. -1. -1. -1. -1. -1. -1. -1
-1. -1. -1. -1. -1. - . -1. -1. -1. -1.
-1. -1. -1. -1. -1. -1. -1. 20. -1. -1.
-1. -1. -1. -1. -1. -1. -1. -1. 20. -1.
-1. -1. -1. -1. -0. -1. -1. -1. 20. -1.

-1. -1. -1. -1. -1. 20, -1. -1. -1. -1.

51. 57. -18 -15 11. 13. -15. -17. 48. 80.

23. -12. -0. -0. -0. -0. 37. 75. 1 . 99.

81. 83. 85. 87. 132. 178. 237. 243. 249. 255.
308. 362. 441. 451. 510. 570. 714. 778.

(b) Numeric input data
Table 8. Continued
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Listing of Blocking Program
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